Séminaire – Petit déjeuner « A Class of Random Field Memory Models for Mortality Forecasting » par Yahia SALHI

Chargement de la carte…

Date / Heure
Date(s) - 06/03/2018
9 h 00 - 10 h 30

Emplacement
Auditorium Gilles Glicenstein

Catégories


Projection de la mortalité: Peut-on faire mieux que Lee-Carter?  

Dans cette présentation nous introduisons une approche alternative, cohérente et parcimonieuse pour modéliser la dynamique des taux de mortalité. Plus précisément, nous considérons la modélisation des améliorations (vitesses de baisse) de la mortalité en utilisant une spécification de champ aléatoire avec une structure causale. Une telle classe de modèles introduit des dépendances parmi les cohortes adjacentes visant à capturer, entre autres, l’effet cohorte et les corrélations entre générations. Le modèle décrit également l’hétéroscédasticité conditionnelle de la mortalité contrairement aux modèles classiques de type Lee-Carter. Le cadre étant général, nous proposons une procédure d’estimation pour les paramètres et nous introduisons une méthodologie de selection du meilleur modèle afin de capter les différents faits stylisés (effet cohorte, dépendance inter-générationnelle et hétéroscédasticité) propre à chaque population. Des applications aux populations générales française, anglaise et américaine sont proposées.

Cette présentation repose sur le papier « A Class of Random Field Memory Models for Mortality Forecasting », Best Paper Award dans la catégorie Demographic Change and Longevity au prochain Congrès Internationale des Actuaires – ICA18

« A Class of Random Field Memory Models for Mortality Forecasting »

Yahia SALHI, Laboratoire SAF / Chaire DAMI

This article proposes a parsimonious alternative approach for modeling the stochastic dynamics of mortality rates. Instead of the commonly used factor-based decomposition framework, we consider modeling mortality improvements using a random field specification with a given causal structure. Such a class of models introduces dependencies among adjacent cohorts aiming at capturing, among others, the cohort effects and cross generations correlations. It also describes the conditional heteroskedasticity of mortality. The proposed model is a generalization of the now widely used AR-ARCH models for random processes. For such a class of models, we propose an estimation procedure for the parameters. Formally, we use the quasi-maximum likelihood estimator (QMLE) and show its statistical consistency and the asymptotic normality of the estimated parameters. The framework being general, we investigate and illustrate a simple variant, called the three-level memory model, in order to fully understand and assess the effectiveness of the approach for modeling mortality dynamics.

Bookings

Les réservations sont closes pour cet événement.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Ce site utilise Akismet pour réduire les indésirables. Apprenez comment les données de vos commentaires sont utilisées.