Présentation à l’atelier 100% Data Science

Organisé par l’Institut des Actuaires, 100% Data Science est un atelier ouvert aux professionnels de l’actuariat, de la gestion des risques et de la Data Science.
L’événement est dédié à la Data Science, aux techniques prédictives, mais aussi aux nouveaux métiers qui émergent.
Christian Robert et Maximilien
Baudry présenteront les travaux de la Chaire DAMI sur les «méthodes de provisionnement individuel à l’aide du machine Learning».
Les montants des réserves des compagnies d’assurance constituent un élément important de leur bilan et une évaluation best-estimate est nécessaire. Ces montants sont généralement évalués à l’aide de modèles de niveau macro et sur des données agrégées dans des triangles en run-off. Au cours des dernières années, une littérature
proposant des modèles d’évaluation à partir des données individuelles de sinistralités est apparue.
Elle propose la plupart du temps des modèles paramétriques pour lesquels il est nécessaire de faire des hypothèses très fortes qui ne sont pas toujours simples à vérifier au regard des données.
Dans cet atelier, ils vont proposer des outils non paramétriques (apprentissage par machine principalement) pour estimer les réserves de type IBNR et RBNS pour chaque
contrat d’assurance sous ‘exposition’ en incluant toutes les variables pertinentes liées au contrat, à l’assuré, ou au sinistre (expertise, paiements, …).
Ces évaluations sont assez complexes à mettre en œuvre car la variable cible (sévérité des sinistres) est censurée à droite la plupart du temps. La performance de cette approche est évaluée en comparant les valeurs prédites avec leurs valeurs réelles sur un grand nombre de données simulées. Des comparaisons sont également proposées
entre cette nouvelle approche individuelle et les méthodes agrégées classiques telles que mack/Chain Ladder.

100% Data Science – programme 2017

Premier Hackaton Data sponsorié par la chaire DAMI

UN ETUDIANT ISFA DANS L’EQUIPE GAGNANTE
Durant 2 jours, des équipes pluridisciplinaires issues de l’écosystème web, les équipes du groupe APRIL et d’autres partenaires parmi lesquels la Chaire DAMI, Keyrus et l’ISFA ont travaillé sur le thème de l’expérience client afin d’imaginer un parcours assurantiel qui soit encore plus simple et plus fluide.
L’objectif était de mettre à l’honneur la «data» sous toutes ses formes, en lançant le premier hackaton data sur des projets open source.

Fayçal alami, étudiant en m2 Actuariat à l’ISFA raconte sa participation au projet vainqueur : Wizyou always with you
La thématique abordée était : «Comment améliorer l’expérience assuré ?»
Notre équipe a pu remporter le 1er prix à travers sa solution : Wizyou.
Wizyou, est une solution à destination des séniors isolés, atteints, ou en rémission d’une maladie grave.
En effet, avec le rallongement de l’espérance de vie –problématique de longévité-, de plus en plus de seniors souffrent d’isolement. Cette situation est d’autant plus pénible
lorsqu’ils sont, ou ont été atteints d’une maladie grave.
Wizyou repose sur deux services complémentaires :
Tout d’abord, une assistante vocale interactive : Scarlett, qui réagit aux instructions vocales qui lui sont données. Celle-ci repose sur une plateforme collaborative qui permet également l’accompagnement des seniors à travers des alertes :
rappelant les rendez-vous médicaux, le renouvellement d’ordonnance, l’achat de médicaments…
Wizyou offre également une relation de proximité personnalisée à travers un
conseiller dédié pour un accompagnement au quotidien : Prise en charge des démarches administratives, mise à jour des calendriers…
Cette solution innovante permet donc d’améliorer l’expérience client auprès des assurés. Le métier d’assureur ne se limitera donc plus au remboursement des frais
de santé, mais consistera aussi à accompagner les patients dans leurs parcours de soins et lors de leur rémission, changeant ainsi le rapport assuré-assureur. De plus,
cette solution est tout à fait viable économiquement, étant donné son coût limité. Elle peut très bien être intégrée à un produit d’assurance santé, moyennant un surcoût limité.

Séminaire petit déjeuner du 28 novembre 2017 : « Méthodes de provisionnement individuel à l’aide du Machine Learning »

Christian ROBERT, Chaire DAMI / Laboratoire SAF
Maximilien BAUDRY, Chaire DAMI / Laboratoire SAF / DataLab BNP Paribas Cardif

Abstract : Les montants des réserves des compagnies d’assurance constituent un élément important de leur bilan et une évaluation best-estimate est nécessaire. Ces montants sont généralement évalués à l’aide de modèles de niveau macro et sur des données agrégées dans des triangles en run-off. Au cours des dernières années, une littérature proposant des modèles d’évaluation à partir des données individuelles de sinistralités est apparue. Elle propose la plupart du temps des modèles paramétriques pour lesquels il est nécessaire de faire des hypothèses très fortes qui ne sont pas toujours simples à vérifier au regard des données. Dans cet atelier, nous proposerons des outils non paramétriques (apprentissage par machine principalement) pour estimer les réserves de type IBNR et RBNS pour chaque contrat d’assurance sous ‘exposition’ en incluant toutes les variables pertinentes liées au contrat, à l’assuré, ou au sinistre (expertise, paiements, …). Ces évaluations sont assez complexes à mettre en œuvre car la variable cible (sévérité des sinistres) est censurée à droite la plupart du temps. La performance de notre approche est évaluée en comparant les valeurs prédites avec leurs valeurs réelles sur un grand nombre de données simulées. Nous comparons également notre approche individuelle avec des méthodes agrégées classiques telles que Mack/Chain Ladder et étudions plus spécifiquement le biais et la volatilité des estimations pour ces différentes approches.

Paris, mardi 28 novembre, 9h
Membres IA : 12 points PPC

Détails et Inscriptions ici

La chaire DAMI, partenaire du premier Hackaton Data a BlendWebMix

L’objectif est de mettre à l’honneur la « data » sous toutes ses formes, en lançant le premier hackaton data sur des projets open source.
« Durant 2 jours, des équipes pluridisciplinaires issues de l’écosystème web, les équipes du groupe APRIL et d’autres partenaires parmi lesquels Keyrus et l’ISFA travailleront sur le thème de l’expérience client. Ceci afin d’imaginer un parcours assurantiel qui soit encore plus simple et plus fluide. »

Les membres de la chaire mèneront une équipe d’étudiants en lice dans la compétition.

« Le mot “Hackathon” vient de l’association des termes “hacking” et “marathon” et désigne un événement où des groupes de développeurs volontaires programment de manière collaborative et intensive sur une courte période de temps. Depuis, le format a été adapté et élargi pour devenir un processus créatif fréquemment utilisé dans le domaine de l’innovation »

Plus d’informations

Retour sur le Workshop  » Data Science in Finance and Insurance  » à Louvain la Neuve (Belgique)

La conférence a eu lieu le 15 septembre 2017 à Louvain la Neuve. Une centaine de personnes ont assisté à la conférence dont 28 académiques (organisateurs et speakers compris), 55 professionnels dont la majorité sont actuaires et travaillent dans des entreprises qui comptent sur le marché belge (Ageas, P&V, Axa, Ethias, DKV) et luxembourgeois (La Luxembourgeoise). Il y avait également de nombreux consultants (EY, Kpmg, reacfin, addactis), quelques personnes en réassurance (Sécura-re) et une délégation de la Banque nationale de Belgique.

Abstracts & slides

 

Retour sur la conférence « Probabilités et Applications en Assurance et en Finance » au Vietnam

Le workshop « Stochastic processes- Actuarial science and Finance » a réuni des chercheurs spécialistes de la théorie des probabilités, travaillant sur des applications en assurance et en finance.

Il s’est tenu au VIASM, à Hanoi, du 31 juillet au 3 aout 2017. Le workshop a donné lieu à des échanges scientifiques entre des participants d’horizon variés : Allemagne, Chine, France, Royaume-Uni, Singapour, Turquie et Vietnam.

La participation de professionnels de BNP Paribas Cardif, qui ont donné deux exposés, a permis d’avoir un retour précis sur les besoins de modélisation actuarielle et sur les applications concrètes des probabilités.

Le workshop a été conjointement financé par le VIASM, la chaire DAMI et la chaire Actinfo.​

Voir les abstracts

 

 

Compétition Kaggle Quora : La solution gagnante !

Kaggle et Quora ont récemment lancé une compétition de prédiction qui a rassemblé plus de 3300 équipes. 5 membres du Data Lab’ de BNP Paribas Cardif ont entrepris de participer  à la compétition en équipe (les DL guys) sur leur temps personnel.  Constituée de Maximilien Baudry, doctorant Labo SAF / BNP Paribas Cardif, Sébastien Conort, Chief Data Scientist de BNP Paribas Cardif, tous deux membres de la chaire DAMI, ainsi que de Tung Lam Dang, Guillaume Huard et Paul Todorov, l’équipe a remporté la compétition!

Quora est un site internet de partage de connaissances qui permet à ses utilisateurs de créer/éditer/organiser des discussions sous forme de questions/réponses. Les questions que les utilisateurs posent portent sur tous les sujets, des dernières actualités aux problèmes d’ado en passant par du soutien en maths.

Lorsqu’un utilisateur ne sait pas que sa question a déjà été posée, soit parce qu’il n’a pas cherché au préalable, soit parce qu’il ne l’a pas trouvée, il arrive qu’une question soit posée une deuxième fois; Cela crée des doublons de discussions, indésirables à la fois pour Quora et pour ses utilisateurs.

Le but du challenge était donc de détecter des questions doublonées. Les données se présentaient sous forme de couples de questions (question 1, question 2), pour lesquels nous devions prédire si oui ou non, l’intention des deux questions était la même.

Exemple de non-doublon :
1/ What is the best book to learn english?
2/ What is the best book to learn french?

Exemple de doublon :
1/ Do you believe there is a life after death?
2/ Is it true that there is a life after death?

Nous avons donc utilisé naturellement des techniques classiques de text-mining, comme des mesures de similarité entre chaîne de caractère, afin de quantifier la différence des deux questions, au sens syntaxique.

Nous avons ensuite utilisé des techniques de deep learning avec des architectures appropriées à l’état de l’art, auxquelles nous avons donné en entrée des word embeddings.
Les word embeddings consistent à transformer chaque mot en un vecteur de grande dimension, dont les coordonnées sont déterminées de façon à respecter au plus l’aspect sémantique de chaque mot. Ainsi, si les deux questions sont proches sémantiquement, alors leurs vecteurs des mots les composant auront des coordonnées proches.

Enfin, nous avons exploité la façon dont les questions nous étaient présentées à l’aide d’un graphe, dont les nœuds représentent les questions et les arêtes représentent l’existence, dans la base de données, du couple de question.
L’idée est d’exploiter le fait qu’une question dupliquée sera très souvent comparée à d’autres questions, ce qui se traduit par un signal fort sur la connectivité des nœuds.
D’autre part, cela permet aussi, grâce aux composantes connexes du graphe, de détecter les thèmes abordés dans les questions.

Quora_winning_solution

Workshop 31 juillet – 3 août 2017 – Stochastic processes- Actuarial science and Finance – Vietnam

The main objective of this workshop is to gather recognized researchers working on probability theory, with applications in insurance and finance. We wish to encourage scientific exchanges between the participants and create new collaborative projects. Practitioners from BNP Paribas Cardif Asia will participate to the workshop, it will also offer the opportunity of ideas sharing between academics and practitioners in Asia. This workshop is funded by the VIASM, the research chair Data Analytics & Models for Insurance, BNP Paribas Cardif, and the DIAF association.

Organisers Nguyễn Hữu Dư (VIASM); Nabil Kazi-Tani (Lyon 1 University, France), Long Ngo Hoang (Hanoi National University of Education), Dylan Possamaï (Université Paris Dauphine, France), Didier Rullière (Lyon 1 University, France)

Venue/Location: VIASM

Registration here

Workshop 15 septembre 2017 « Data Sciences applied to insurance and Finance »

Organisé dans le cadre de la chaire DAMI, en collaboration avec l’ISBA (Institute of Statistics, Biostatistics and Actuarial) de l’UCL Université Catholique de Louvain

The aim of this conference is to promote financial and insurance applications of data science. For banks and insurance companies, profits will materialise through accelerated and more accurate decision processes, as well as an increased clients’ satisfaction thanks to more personalised offers and services. The systematic use of data science is becoming a strategic growth lever that will be discussed in this conference.

Conférence ouverte au public
Inscription: 100€
Membres IA: 40 points PPC
Informations et inscriptions

Séminaire petit déjeuner du 27 juin 2017 : Marking to Market vs Taking to Market

Par Guillaume Plantin, Sciences Po Paris

Le papier développe une théorie des mesures comptables optimales car ces dernières sont primordiales pour la gouvernance d’entreprise. Nous étudions l’interaction à l’équilibre entre les règles de mesure que les entreprises jugent optimales sur le plan privé, leur gouvernance et la liquidité sur le marché secondaire de leurs actifs. Cette approche révèle une utilisation excessive de la comptabilité en valeur de marché. Les mesures de la performance de l’entreprise sont trop dépendantes de l’information générée par les ventes d’actifs d’autres entreprises et pas assez de la réalisation des gains en capital possibles d’une entreprise. Cela réduit la liquidité du marché et réduit l’information des signaux de prix.

Paris, mardi 27 juin 2017, 9h

Détails et inscription gratuite ici

Membres IA : 12 points PPC