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Difference between LSMC and 

Replicating Portfolios 

 
Based on joint work with: Eric Beutner and Janina Schweizer at 

Maastricht University 
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Risk Calculations under Solvency II 

• Price at t is calculated as conditional expectation under Q-

measure for a specific scenario x at t 

– A scenario is a specific value for the relevant risk-drivers 

• Mathematical notation: price(t,x) = EQ[ f(ST) | St=x ] 

• How to compute this value? 

– “Brute force”: simulation-in-simulation 

– Alternative : fit a function at t=1 or t=T 

t=0 t=1 t=T 

x1 

x2 

x3 

x4 
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Outline 

• Approximation of Functions 

• Approximation in Higher Dimensions 

• Regress Now vs Regress Later 
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Approximation of Functions 
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Approximation - Distance 

• Consider a random variable ST with a probability density 

function p(ST). 

– The variable S is a risk-driver, e.g. stock-price or interest rate. 

• Consider a (payoff) function f(ST) 

– For example: f(ST) = max{ ST – K , 0 } or f(ST) = ln ST 

• Consider another function g(ST). 

• What is the “distance” between f and g? 

– Distance = 0  f ≡ g 

– Distance >0 for any f ≠ g 

– Symmetry: d(f,g) = d(g,f) 

– Triangle inequality: d(f,g) ≤ d(f,h) + d(h,g) for all f,g,h 
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Approximation - Distance 

• Use “root mean square error” as distance: 

 

 

 

• Satisfies all properties 

– Only for f ≡ g for all S do we get d(f,g)=0, otherwise d(f,g)>0 

– Makes intuitive sense: give more weight to errors with high 

probability 

• This choice is not unique. Other distance functions are 

also possible. 

– For example: use different probability q(S) or error-power. 

– “Norm equivalence”: convergence for one distance-function 

implies convergence in other norms as well. 

  

  2
1

2
1

2

2

)()(

)()()(),(

SgSfE

dSSpSgSfgfd



 



KLEYNEN CONSULTANTS © 2015  

Approximation – Polynomials 

• Approximate complicated payoff function f(S) with 

“simple” functions. 

– Easy to compute market-price for the simple functions 

• Example: choose polynomials Sk  

 

• Approximate f(S) with ∑ ak (ST)
k for k=0…K  

– Make smart choice for coefficients ak  

• Best choice: min d(f, ∑akS
k ) = E[ (f - ∑akS

k )2 ] 

– Solve system of K+1 equations: 
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Approximation – Polynomials 

• Optimal solution: 

 

 

 

 

 

• This is a least squares solution: a* = (X’X)-1(X’f) 

– Implement this estimator for a finite sample 

– Each column in X is Sk  

– Each row in X and f is a draw from the random variable S 
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Approximation - Example 

• Examples of 

approximation of payoffs 

with polynomials 

– Works very well for smooth 

functions 

– Payoff with kink is difficult 

for polynomials 

 

• Lesson: choose 

appropriate basis for 

payoff 
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Approximation - Theory 

• The collection of polynomials 1, S, S2, ... forms a basis for 

the space of payoff functions 

• Every function (with E[ f2 ] < ∞) can be perfectly 

replicated with polynomials for K → ∞ 

• Every function f has a unique representation: 

• The coefficients ak are deterministic (do not depend on S) 

• Therefore we can compute (any measure Q and time t): 

 

 

• Express price of complicated payoff as sum of simple 

payoffs. 
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Approximation - Practice 

• In practice we can only approximate a complicated f(S) 

with a finite number of terms: 

• We can only use a finite sample to estimate the ak 

coefficients:  

• Two sources of error: 

– Truncation error due to finite K, e.g. converge as O(K-g) 

– Estimation error due to estimate for ak on sample of size N 

– Study of converge (K,N)∞ by Beutner-Pelsser-Schweizer (2015) 

 

• Choice of different basis will determine convergence rate 

g for a class of payoff functions 

– Polynomials work very well for smooth functions 

– Polynomials converge slow for kinked payoffs 





K

k

k

k SaSf
0

)(





K

k

k

k SaSf
0

ˆ)(



KLEYNEN CONSULTANTS © 2015  

Approximation – Choice of Basis 

• There are many possible choices for basis-functions 

– Polynomials 

– Sin(), Cos() functions (Fourier basis) 

– Piecewise linear: max(S – Kk , 0) with Kk= P-1(dk) 

• With dk are dyadic rationals 

 

 

 

 

– Other, see “machine learning” literature 

• Find “good” basis to approximate payoff f(S) with a few 

basis functions 

– Also compute analytical price for each basis function 

– Piecewise linear  call/put options. 
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Approximation in Higher Dimensions 
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Higher Dimensions 

• Realistic insurance products have a payoff that depends on 

multiple risk drivers 

• Same risk driver at different points in time 

– Path dependent payoff, such as profit-sharing 

• Different risk drivers 

– Unit-linked: mortality and financial 

– Interest rates and inflation 

 

• General theory outlined before still works 

• Use more elaborate basis to encompass all relevant risks 

• Choice of good basis is even more important 
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Higher dimension – 2d example 

• Consider a path-dependent payoff max(ST – St , 0) with t<T 

– Only pay out positive return of S between t and T. 
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Higher dimension – 2d basis 

• Consider the following basis 

• Poly’s up to degree 4 

• 15 terms in total 

• Need cross-terms 

– Uni terms do not form basis! 

– Eur options do not form basis! 

 

• Curse of dimensionality for dim d: truncation error O(K-g/d) 

– General result for product basis 

– Really important to find “optimal” basis 
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Higher dimension – 2d example 

• Draw 200 random values from lognormal process  

– dS=(4%)Sdt + (16%)SdW 

– Fit payoff max(S10 – S5 ,0) on the 15-term basis 
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Higher dimension – 2d example 

• Target vs Fitted function 

– Huge errors for S5 high and S10 low... 

– But nearly perfect scatter plot! 

• What went wrong? 
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Higher dimension – 2d example 

• What went wrong? 

• Realistic training scenarios do not cover the whole space 

– They only cover “realistic” outcomes 

– Out-of-sample simulation from same model will cover same region 

 

• Need to cover whole space 

– Increase volatility in model 

– At 32% 
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Higher dimension – 2d example 

• Target vs Fitted function 

– Training sample with sig = 32% 

• Much improved fit 

– Still errors for S5 high and S10 low 
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Higher dimension – Price at t=1 

• Calculate price at t=1 of payoff under Q 

– Using realistic training sample 

 

 

 

 

 

– Using sig=32% training sample 

– Same blue line in both graphs! 

 

• Note: decoupling of training 

 and pricing measure 
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Regress Now vs Regress Later 
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Calculate prices at t 

• Price at t is calculated as conditional expectation under Q-

measure for a specific scenario x at t 

– A scenario is a specific value for the relevant risk-drivers 

• Mathematical notation: price(t,x) = EQ[ f(ST) | St=x ] 

 

• How to compute this value? 

• “Brute force”: simulation-in-simulation 
t=0 t=1 t=T 

x1 

x2 

x3 

x4 
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Calculate price at t 

• Alternative methods to calculate prices at t 

• Replicating portfolio: 

– First fit payoff on basis at T, then calculate expectation at t 
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Calculate price at t 

• Alternative methods to calculate prices at t 

• Function fitting: 

– Calculate price at t by regressing payoff at T on basis at t 
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Example for 2d payoff 

• Replio fit (training sig=32%, Q-sig=16%) 

 

 

 

• Function fit (Q-sig=16%) 

 

Function Fit: 

• Regress payoff at T=10 on 

basis functions at t=1 

• Low R2 by construction 
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Function Fitting vs Replio 

• Replicating portfolio / 

Regress Later 

 

• First fits the payoff 

function 

• Compute cond.expectation 

of basis analytically 

• Harder for path-dep payoff 

• Test quality of fit 

• Is model-independent: 

changing the pricing Q-

measure does not affect 

the coefficients ak 

• Function Fitting / LSMC / 

Regress Now 

 

• Directly fits the pricing 

function 

• Applies a smoothing during 

estimation 

• Easy for path-dep payoff 

• Cannot test quality of fit 

• Is model-dependent: 

calculated price depends 

on simulated sample under 

Q-measure 
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Contact 
 

  Kleynen Consultants BV 

 

St. Franciscusweg 21 

6411 GH  HEERLEN 

 

T 045 – 571 47 83 

E r.kleynen@kleynen-consultants.nl 

I     www.kleynen-consultants.nl 
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